Decreasing chains without lower bounds in the Rudin-Frolík order
نویسندگان
چکیده
منابع مشابه
Lower Bounds for Lucas Chains
Lucas chains are a special type of addition chains satisfying an extra condition: for the representation ak = aj + ai of each element ak in the chain, the difference aj − ai must also be contained in the chain. In analogy to the relation between addition chains and exponentiation, Lucas chains yield computation sequences for Lucas functions, a special kind of linear recurrences. We show that th...
متن کاملLower Bounds for Higher-Order Convex Optimization
State-of-the-art methods in convex and non-convex optimization employ higher-order derivative information, either implicitly or explicitly. We explore the limitations of higher-order optimization and prove that even for convex optimization, a polynomial dependence on the approximation guarantee and higher-order smoothness parameters is necessary. As a special case, we show Nesterov’s accelerate...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملLower Bounds in a Parallel Model without Bit Operations
We define a natural and realistic model of parallel computation called the PRAM model without bit operations. It is like the usual PRAM model, the main difference being that no bit operations are provided. It encompasses virtually all known parallel algorithms for (weighted) combinatorial optimization and algebraic problems. In this model we prove that for some large enough constant b, the minc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1990
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1990-1007490-8